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This paper introduces boundary controllers for a general class of non-linear
string}actuator systems. The non-linear distributed-parameter model accounts for
large amplitude displacement and the associated varying tension according to
a general class of non-linear stress}strain relationships. A non-linear, model-based
controller asymptotically drives the system energy to zero. Redesign of the
controller using adaptation laws allows compensation for parametric uncertainty
while asymptotically driving the system energy to zero. Experimental results verify
the feasibility of implementing the proposed controllers and compare the
performance with damper and linear controllers.
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1. INTRODUCTION

Many #exible mechanical systems exhibit vibration in the presence of disturbances.
Often a cost-e!ective and practical method for reducing vibration is to actively
apply control forces through actuators located at the boundary of the mechanical
system. Several researchers [1}4] have proposed boundary controllers for a variety
of #exible systems. With regard to some of the recent boundary control work for
string-like systems, Baicu et al. [5] propose a linear, stabilizing boundary controller
for a #exible cable system that utilizes the cable &&slope'' at the actuated boundary as
a feedback signal. In reference [6], MorguK l designs boundary feedback controllers
for the wave equation that include proportional and strictly positive real derivative
feedback. Shahruz et al. [7] illustrate how a standard boundary damper can be
used to exponentially stabilize a string model that includes non-linear tension
e!ects. Canbolat et al. [8] use measurements of the slope, slope-rate, and the
velocity at the cable's actuated boundary to develop an exponentially stabilizing
boundary controller for the cable model used in reference [5]. Recently, researchers
0022-460X/00/010113#20 $35.00/0 ( 2000 Academic Press



114 F. ZHANG E¹ A¸.
have illustrated how boundary controllers previously designed for string-like
models can be used to control vibration in axially moving material systems (e.g.,
web-handling systems). For example, Quieroz et al. [9] design an interstitial
controller that regulates the displacement of an axially moving string by applying
a control force and a control torque to the web via a mechanical guide. Shahruz
[10] illustrates how a standard boundary damper can be used to stabilize an axially
moving string model that includes non-linear tension e!ects.

In this paper, we relax several important assumptions in the previous research to
enlarge the applicability of boundary control for string systems. Speci"cally, the
model used for control design purposes includes non-linear terms in the "eld
equation and actuator boundary condition resulting from large amplitude
displacements and non-linear elastic e!ects. This model reduces to that used in
reference [7] if the mass of the actuator is equal to zero and the slope of the
displacement is su$ciently small. Based on the proposed model for the
string}actuator system, we design a model-based boundary controller that
asymptotically drives the total energy of the string}actuator system to zero. The
proposed boundary controller is a non-linear algorithm that requires measurement
of: (1) the string's slope (and its time derivative) at the actuated boundary, (2) the
string's velocity at the actuated boundary, and (3) the tension in the string. We then
redesign the model-based boundary controller as an adaptive boundary controller
that compensates for parametric uncertainty and asymptotically drives the total
energy of the system to zero. The performance of the controller is demonstrated via
experimental results.

2. DYNAMIC MODEL

As in reference [11], we neglect the tangential and out-of-plane displacement of
the string}actuator system of Figure 1 and assume

¹(t)@EA, (1)

where E denotes the string Young's modulus, A represents the string cross-sectional
area, and ¹(t) is the time-varying string tension. This assumption implies that the
tension is uniform along the string (i.e., independent of x). We assume that the
tension function has the following properties: (1) ¹(y(t)) is a strictly positive
function that satis"es

¹(y(t))*¹
0
'0, (2)

where y(t) is the string stretch, (2) if y(t) is bounded, ¹(y(t)) is also bounded,
and (3) the potential energy stored in the string can be lower and upper bounded as
follows:

a
l
y(t))PE"P

y

0

¹ (y(t)) dy)i
u
(y (t)), (3)



Figure 1. Schematic diagram of the string}actuator model.
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sA continuous function i(p) is said to be class K if: (i) i(0)"0, (ii) i(p)'0 ∀p'0, and (iii) i(p) is
non-decreasing.

where a
l
is a positive scalar constant, i

u
( )) is some continuous class K function.s

The string stretch is given by

y (t)"P
L

0

(!1#J1#(u
x
(x, t) )2), dx'0, (4)

where ¸ denotes the string length, x3[0, ¸] denotes the independent position
variable, t denotes the independent time variable, u (x, t) denotes the transverse
displacement at position x for time t, and the subscripts x and t denote the partial
derivatives with respect to x and t respectively.

As in reference [12], the transverse dynamics for the mechanical system depicted
in Figure 1 are of the form

ou
tt
(x, t)"[¹(y(t)) sin (h(x, t) )]

x
, (5)

where o denotes the mass per unit length of the string, and h(x, t) denotes the
angular inclination of the string tangent with respect to x axis. It can be shown [12]
that

sin(h(x, t))"
u
x
(x, t)

J1#(u
x
(x, t))2

. (6)
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As illustrated in Figure 1, one boundary of the string is pinned, and the other
boundary is connected to an actuator. Since we have assumed that the tension is
uniform along the string, we can now use equations (6) and (5) to formulate the
non-linear partial di!erential equation (PDE) and boundary conditionst for the
string}actuator system as follows:

ou
tt
(x, t)"¹(y(t))C

u
x
(x, t)

J1#(u
x
(x, t))2Dx for x3(0, ¸), (7)

u(0, t)"0, (8)

mu
tt
(¸, t)#¹ (y(t))

u
x
(¸, t)

J1#(u
x
(¸, t))2

#>(u
t
(¸, t))/"v(t), (9)

where m denotes the mass of the actuator at the boundary x"¸, v(t) denotes the
control input force at the boundary, and the term > (u

t
(¸, t) )/ is a linear

parameterization representing additional actuator dynamics (e.g., friction) with
>( ))3R1]p a regression matrix and /3Rp a parameter vector.

Remark 1. It can be shown that the dynamics given by equations (7)}(9) reduce to
the linear string model if a linear stress}strain relationship is used:

¹(y(t))"¹
0
#

EA
¸

y(t), (10)

and the slope of the transverse displacement is small (i.e., u
x
(x, t)@1 allows

J1#(u
x
(¸, t))2 to be replaced by unity in equations (7), (9), and (4)). Note that the

model used in reference [7] can also be obtained from equations (7)}(9) under the
assumptions: (1) the mass at the actuator is equal to zero (i.e., m"0), (2) the string
tension is given in equation (10), (3) the slope of the transverse displacement is small
(i.e., u

x
(x, t)@1 allows J1#(u

x
(¸, t))2 to be replaced by unity in equations (7) and

(9)), and (4) using 1#1
2
(u

x
(x, t))2, as opposed to unity, as a better than linear

approximation for J1#(u
x
(x, t))2 in equation (4). The ¹(y(t)) of equation (10) is

strictly positive and satis"es equation (3) for some a
l
and i

u
( ) ); furthermore, most

stress}strain models (e.g., polynomial) satisfy the mild assumptions imposed by
equations (2) and (3).

Remark 2. Note that if the control input v (t) equals zero, then the system given by
equations (7) and (9) is conservative (i.e., KE#PE"constant).

3. CONTROL FORMULATION

3.1. MODEL-BASED CONTROL LAW

The primary control objective is to design an asymptotically regulating
controller for the dynamics of equations (7)}(9). Based on the subsequent stability
tThe pinned boundary condition (8) implies that u
t
(0, t)"0.
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analysis, we propose the following non-linear, boundary controller:

v(t)"!

mu
xt

(¸, t)
(1#(u

x
(¸, t))2)3@2

#¹(y(t))
u
x
(¸, t)

J1#(u
x
(¸, t))2

#> (u
t
(¸, t))/!Ak#

k
r

2
¹(y(t))B g(t), (11)

where

g(t)"u
t
(¸, t)#

u
x
(¸, t)

J1#(u
x
(¸, t))2

(12)

and k, k
r
are scalar control gains chosen to satisfy

k'0 and k
r
*1. (13)

Remark 3. Equations (11) and (12) show that the controller requires measurement
of u

xt
(¸, t), u

x
(¸, t), u

t
(¸, t) and ¹(y(t)). These quantities can be measured at the

actuated boundary using standard sensors. Speci"cally, ¹(y(t)) can be measured by
a load cell, u

x
(¸, t) can be measured by a load cell or an encoder, and u (¸, t) can be

measured by an encoder. The quantities u
xt

(¸, t) and u
t
(¸, t) can be approximated

numerically by di!erentiating u
x
(¸, t) and u(¸, t) with respect to time, respectively.

After di!erentiation of equation (12) with respect to time, multiplication of both
sides by m, and substitution for mu

tt
(¸, t) from the boundary condition (9), we

obtain the following open-loop dynamics for g(t):

mgR (t)"
mu

xt
(¸, t)

(1#(u
x
(¸, t))2)3@2

!¹(y(t))
u
x
(¸, t)

J1#(u
x
(¸, t))2

!>(u
t
(¸, t))/#v (t), (14)

where g5 (t)"(d/dt) (g(t)). After substitution of the control input (11) in the right-
hand side of equation (14), we obtain the closed-loop dynamics for g (t),

mgR (t)"!Ak#
k
r

2
¹ (y(t))B g (t). (15)

Theorem 1. Given the ,eld equation (7), boundary condition (8), and closed-loop
boundary condition (15), kinetic energy (18) and potential energy (3) of the
string}actuator system decay asymptotically to zero.

Proof. We "rst prove that all signals in the closed-loop system are bounded. We
de"ne the following non-negative, scalar function

<
1
(t)"E(t)#1

2
mg2(t), (16)

where

E (t)"
1
2 P

L

0

ou2
t
(x, t) dx#P

y

0

¹(y(t)) dy. (17)
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From the structure of <
1
(t) given by equations (16) and (17), we can see that

<
1
(t)*0. In Lemma 1 (Appendix A) we show that <0

1
(t))0; hence, since <0

1
(t) is

bounded below by zero and is decreasing or constant, we know that <
1
(t) is

bounded (<
1
(t)3¸

=
). Since <

1
(t)3¸

=
, we can see from equation (16) that E(t) of

equation (17) and g (t) of equation (12) are also bounded for all time. Since
E(t)3¸

=
, it follows that the potential energy of the system de"ned in equation (3) is

bounded.

Remark 4. Since the proposed control strategies are relatively simple, smooth
functions, we will assume the existence of a solution for the dynamics given above
under the proposed control. To illustrate that the control force is bounded, we will
invoke the assumptions that the displacement u(x, t) and its time derivative u

t
(x, t)

belong to a space of functions that has the following properties: (1) if the potential
energy of system (3) is bounded, then u (x, t), u

x
(x, t), and u

xx
(x, t) are bounded for

all (x, t)3[0, ¸]][0,R), and (2) if the kinetic energy of the system is bounded then
u
t
(x, t) and u

xt
(x, t) are bounded for all (x, t)3[0, L]][0,R) where the kinetic

energy of the system is given by

KE"

1
2 AP

L

0

ou2
t
(x, t) dx#mu2

t
(¸, t)B. (18)

These assumptions are reasonable because if the energy of a real physical system is
bounded then all the signals that make up the governing dynamic equations should
also remain bounded.

From the assumption in Remark 4, we assume that u (x, t), u
x
(x, t), and u

xx
(x, t)

are also bounded for all (x, t)3[0, ¸]][0,R). From the boundedness of g (t), we
use equation (12) to show that u

t
(¸, t) is bounded. Since E(t), g(t)3¸

=
, the kinetic

energy of the system given by equation (18) is bounded; hence, we can use Remark
4 to show that u

t
(x, t) and u

xt
(x, t) are bounded for all (x, t)3[0, ¸]][0,R). In

addition, since the potential energy is bounded, it is easy to see from equation (3)
that y(t) de"ned in equation (4) is also bounded. Since y (t)3¸

=
, we can use the

properties of ¹(y(t)) of equation (2) to state that ¹(y(t))3¸
=

. Since u
x
(¸, t), u

t
(¸, t),

u
xt

(¸, t), g (t), and ¹(y(t))3¸
=

, we know that the control force v(t) given by
equation (11) is bounded. Finally, since g (t) and ¹(y(t))3¸

=
, we can use equation

(15) to state that g5 (t)3¸
=

. From the above information, we can now use equations
(7) and (9) to show that u

tt
(x, t) is bounded for all (x, t)3[0, ¸]][0,R).

To prove that the kinetic energy and the potential energy of the string}actuator
system decay asymptotically to zero, we de"ne the scalar function

<(t)"<
1
(t)#E

c
(t), (19)

where E
c
(t) is de"ned as

E
c
(t)"2bo P

L

0

xu
t
(x, t)u

x
(x, t) dx (20)
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and b is a positive weighting constant. In Lemma 2 (Appendix A), we show that the
positive constant b can be selected small enough such that the function <(t) of
equation (19) can be bounded below and above in the following manner:

0)j
1
(E

a
(t)#g2(t)))<(t))j

2
(E (t)#g2 (t)), (21)

where j
1
, j

2
are positive constants de"ned in Lemma 2 and

E
a
(t)"

1
2 P

L

0

ou2
t
(x, t) dx#y (t). (22)

In Lemma 3 (Appendix A), we show that the positive constant b can be selected
small enough such that the time derivative of the function< (t) of equation (19) can
be upper bounded as follows:

<0 (t))!i
0AP

L

0
A!1#J1#(u

x
(x, t))2Bdx#P

L

0

u2
t
(x, t) dx#u2

t
(¸, t)BO!g(t),

(23)

where i
0

is some positive constant and g(t) is a non-negative, scalar function
de"ned by equation (23). Since u

x
(x, t), u

t
(x, t), u

xt
(x, t), u

tt
(x, t), and u

xx
(x, t) are all

bounded for all (x, t)3[0, ¸]][0,R), gR (t)3¸
=
; hence, from equation (23), we can

now invoke Lemma 4 (Appendix A) to show that

lim
t?=

g(t)"0. (24)

From the structure of g(t) de"ned in equation (23), we can use equations (24), (18),
(3) and (4) to show that the kinetic energy and the potential energy of the system
decay asymptotically to zero. K

Remark 5. Intuitively, if the total energy is driven to zero, one would expect that
the transverse displacement for the string}actuator should also approach zero (i.e.,
lim

t?=
KE#PE"0Nlim

t?=
Du (x, t) D"0); however, for the non-linear string}

actuator dynamics given by equations (7)}(9), there does not seem to be
a straightforward way to use the result of Theorem 1 to prove lim

t?=
Du (x, t) D"0.

3.2. ADAPTIVE CONTROL LAW

In this subsection, we redesign the model-based controller of equation (11) to
compensate for parametric uncertainty. We now rewrite the open-loop dynamics
for g(t) de"ned in equation (12) as follows:

mgR (t)"= ( ))h!¹(y(t))
u
x
(¸, t)

J1#(u
x
(¸, t))2

#v(t), (25)

where the matrix= (u
xt

(¸, t), u
t
(¸, t))3R1](p#1) is given by

=( ))"C
u
xt

(¸, t)
(1#(u

x
(¸, t))2)3@2

, !> (u
t
(¸, t))D (26)



120 F. ZHANG E¹ A¸.
and the unknown parameter vector h3Rp`1 is given by

h"[m, /T]T. (27)

The adaptive controller consists of the control law

v(t)"!= ( ) )hK #¹(y (t))
u
x
(¸, t)

J1#(u
x
(¸, t))2

!Ak#
k
r

2
¹(y(t))B g (t) (28)

and the adaptation algorithm

h)Q (t)"C=T( ) )g(t) (29)

that calculates the parameter estimate h) (t) on-line. The adaptation gain matrix
C3R(p#1)](p#1) is diagonal, positive-de"nite, and constant. After substituting
equation (28) into equation (25), we obtain the closed-loop dynamics expression for
g(t) as

mgR (t)"!Ak#
k
r

2
¹(y (t))B g(t)#= ( ))hI (t), (30)

where h3 (t)"h!hK (t)3Rp`1 denotes the parameter estimation error vector.
It can easily be shown that the adaptive controller of equations (28) and (29)

ensures the same stability as that of Theorem 1. Speci"cally, to prove that all signals
in the closed-loop system are bounded, we can utilize the non-negative function

<
1a

(t)"<
1
(t)#1

2
hI T(t)C~1hI (t), (31)

where <
1
(t) was de"ned in equation (16). After di!erentiating <

1a
(t) with respect to

time and substituting equations (30) and (29), we can show that <0
1a

(t))0 in the
same manner as Lemma 1. In a similar manner to that used in the proof of Theorem
1, we can show that all the signals in the closed-loop system and the controller are
bounded for all time.

To prove that the kinetic energy and the potential energy of the string}actuator
system de"ned by equations (18) and (3) decay asymptotically to zero, we utilize the
function

<
a
(t)"<(t)#1

2
h3 T (t)C~1h3 (t), (32)

where <(t) was de"ned in equation (19). Using a similar procedure as in Lemma 2,
we can show that the function <

a
(t) equation of (32) can be lower and upper

bounded in the following manner:

0)j
1a

(E
a
(t)#g2(t)#EhI (t)E2))<

a
(t))j

2a
(E (t)#g2(t)#EhI (t)E2), (33)

where j
1a

, j
2a

are positive constants. After following a process similar to that of
Lemma 3, we obtain

<0
a
(t))!g(t), (34)

where g (t) was de"ned in equation (23). Hence, we can repeat the same stability
arguments used in proof of Theorem 1 to show that the kinetic energy and the
potential energy of the string}actuator system decay asymptotically to zero.



Figure 2. Schematic diagram of the experimental setup.
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4. EXPERIMENTAL RESULTS

4.1. EXPERIMENTAL SETUP

Figure 2 shows a schematic diagram of the experimental setup used to implement
the controllers. The setup consists of a #exible string pinned at one end and
attached to a linearly translating gantry at the other end. A brushless DC motor
(Baldor model 3300) drives the gantry via a belt-pulley transmission. The gantry
rides on two parallel 1-in diameter steel rods on linear bearings. The displacement
of the gantry, u (¸, t), is obtained from a 1000-count rotary encoder (Hohner)
attached to the motor shaft. The static and dynamic tension measurement of the
string, ¹(t), is obtained from the JR3 force sensor attached to the string at the
pinned end. A hollow-shaft 1000-count rotatory encoder is mounted on the gantry
to measure the string de#ection angle, u

x
(¸, t), at the free end.

A Pentium 166 MHz PC running QNX (a real-time micro-kernel-based
operating system) hosts the control algorithm. Qmotor, a graphical user-interface
developed in-house, provides an environment to write the control algorithm in &&C''
programming language. It also provides features such as on-line graphing and
allows the user to vary control gains without having to recompile the program. The
MultiQ I/O board provides for data transfer between the computer subsystem and
the electrical interface. An A/D channel measures the current #owing through the
windings of the DC motor as sensed by a Hall-e!ect current sensor. One D/A
channel drives the DC motor through a Techron linear power ampli"er providing
upto 10 A at 100 V. All the controllers are implemented using a sampling period of



Figure 3. Experimental results in open-loop mode: string de#ection angle u
x
(¸, t).

Figure 4. Experimental results for damper controller: (a) string de#ection angle u
x
(¸, t), (b) gantry

displacement u (¸, t), and (c) control voltage.
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0)5 m s. The velocity of the gantry and time derivative of the string de#ection angle
are obtained using a backwards di!erence algorithm applied to the gantry position
and the string de#ection angle, respectively, with the resulting signals "ltered by
a second order digital "lter. Trapezoidal integration implements the adaptive
update laws (29). The parameter values for the mechanical system are m"3)5 kg,
o"0)03 kg/m, ¸"0)31 m.



Figure 5. Experimental results for linear controller: (a) string de#ection angle u
x
(¸, t), (b) gantry

displacement u (¸, t), and (c) control voltage.
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4.2. EXPERIMENTAL RESULTS

Five experiments are conducted to assess the performance of the proposed
controllers. The transient response to a consistent initial displacement is studied.
The control gains are tuned to provide the best response.

Figure 3 shows the string response to the initial displacement without control
(open loop, v(t)"0). The response decays under natural damping in approximately
10 s. In Figure 4, a damper control law

v(t)"!k
d
u
t
(¸, t) (35)

decreases the settling time to approximately 7 s with k
d
"4)25.

For small transverse displacement, the model-based controller of equation (11)
becomes a linear controller as follows:

v(t)"!mu
xt

(¸, t)#¹
0
u
x
(¸, t)!Ak#

k
r

2
¹

0B g(t), (36)

where ¹
0

is the mean tension and the actuator compensation term > (u
t
(¸, t))/ is

not used. The linear control is implemented with ¹
0
"29)75 N and achieves the

best regulation results with k"2)6 and k
r
"3)0 shown in Figure 5. The inclusion of



Figure 6. Experimental results for model-based controller: (a) string de#ection angle u
x
(¸, t),

(b) gantry displacement u (¸, t), (c) tension ¹(t), and (d) control voltage.
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AThe sign function sgn(x) is de"ned as follows:

sgn(x)"G
1 if x'0,

0 if x"0,

!1 if x(0.

string slope feedback in the control causes more gantry motion and
a corresponding increased damping, reducing the settling time to 6 s.

The fourth experiment uses the model-based control (11) withA

> ( ) )"[sgn(u
t
(¸, t)), u

t
(¸, t)], /"[F

s
, F

d
]T, (37)

where F
s
and F

d
are the static and dynamic friction coe$cients respectively. The

friction coe$cients are experimentally determined to be F
s
"1)05 N and F

d
"

15)23 N s/m. The best regulation results are achieved with k"3)0 and k
r
"3)12.

Figure 6 shows the angular de#ection u
x
(¸, t), the gantry displacement u (¸, t), the

time-varying tension signal ¹(t), and the control voltage resulting from the initial
displacement. The non-linear control response is only slightly improved compared
to the linear control. Finally, the adaptive controller de"ned by equation (28) and
the update laws given by equation (29) are implemented. The parameter estimates
are initialized to 25% of their nominal values. The best regulation results are
achieved with k"3)0, k

r
"2)97, and C"diagM2)55, 50, 0)69N. Again, the response



Figure 7. Experimental results for adaptive controller: (a) string de#ection angle u
x
(¸, t), (b) gantry

displacement u (¸, t), (c) control voltage, (d) mass estimate m( (t), (e) static friction coe$cient estimate
F)
s
(t), and (f ) dynamic friction coe$cient estimate FK

d
(t).

TABLE 1

Controller performance summary

r.m.s. u
x
(¸, t) r.m.s. control

Controller type (deg) voltage (V)

Open-loop system 2)75 *

Damper controller 1)98 4)91
Linear controller 1)94 6)25

Model-based controller 1)70 7)30
Adaptive controller 1)77 5)32
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is similar to the previous two controllers. The estimated parameters converge to
"nal values but not their exact values. Persistent excitation via sinusoidal or
repeated impulse inputs would move the estimates to their actual values.

Table 1 compares the experimental performance of the controllers by computing
the r.m.s. string de#ection angle over a 10 s time interval. The trends in the r.m.s.
data mirror the settling time performance, showing that the adaptive controller
provides a 12% improvement in performance with similar control e!ort as
compared to damper control.
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5. CONCLUSION

In this paper, we design a class of boundary controllers that asymptotically
drives the total energy of a non-linear string}actuator system to zero. The non-
linear model relaxes the restrictive assumptions of previous work by including large
amplitude displacements and the mass and non-linearities associated with the
actuator. Experimental results demonstrate the implementability of the proposed
control and the improved performance compared to damper or linear controllers.
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APPENDIX A: STABILITY LEMMAS

Lemma 1. ¹he time derivative of the function <
1
(t) de,ned in equation (16) can be

upper bounded as <Q
1
(t))0.

Proof. After di!erentiating equation (16) with respect to time, we obtain

<Q
1
"EQ !Ak#

k
r

2
¹( ))B g2, (A1)

where equation (15) has been utilized. To obtain the expression for EQ (t) in equation
(A1), we di!erentiate equation (17) with respect to time, and then substitute the "eld
dynamics given by equation (7) and utilize the structure of y(t) given in equation (4)
to obtain

EQ "¹ ( )) CP
L

0

u
t

L
LxA

u
x

J1#(u
x
)2BdxD#¹( )) P

L

0

u
xt

u
x

J1#(u
x
)2

dx. (A2)

After integrating the bracketed term in equation (A2) by parts and cancelling
common terms, we obtain

EQ "¹( ) )u
t
(¸)

u
x
(¸)

J1#(u
x
(¸))2

, (A3)

where the boundary condition given by equation (8) has been employed. We now
rewrite equation (A3) in the advantageous form

EQ "
¹( ) )
2

g2!
¹( ) )
2 Au2

t
(¸)#

u2
x
(¸)

1#u2
x
(¸)B (A4)

by using the de"nition of g(t) in equation (12). After substituting equation (A4) into
equation (A1) and collecting common terms, we obtain

<0
1
"!Ak#

(k
r
!1)
2

¹( ) )B g2!
¹ ( ))
2 Aut(¸)#

u2
x
(¸)

1#u2
x
(¸)B . (A5)

Since k and k
r
have been restricted according to equation (13), and ¹( ) ) is positive

according to equation (2), we can see from equation (A5) that <0
1
(t) can be upper

bounded as <0
1
(t))0. K

Lemma 2. ¹he function <(t) de,ned in equation (19) can be bounded as given by
equation (21), where the positive constants j

1
and j

2
are de,ned by

j
1
"minGA

1
2
!b¸B, (al!2bo¸d),

m
2H, j

2
"maxG2A

1
2
#b¸B,

2 A1#2
bo¸d

a
l
B ,

m
2H , (A6)
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where the weighting constant b must be selected to satisfy the following condition:

b(minG
1

2¸
,

a
l

2o¸dH (A7)

and d is a positive bounding constant de,ned as

dO1#sup
x, t

M (u
x
(x, t))2N. (A8)

Note, as illustrated by Lemma 1 and the "rst part of the proof of Theorem 1, we
know that u

x
(x, t) is bounded for all (x, t)3[0, ¸]][0,R); hence, we know that the

constant d de"ned in equations (A8) exists.

Proof. To prove the above result, we "rst show that the summation of E(t) and
E
c
(t), de"ned in equations (17) and (20), respectively, can be bounded by

0)k
1
E

a
)E#E

c
)2k

2
E, (A9)

where E
a
(t) is de"ned in equation (22), and k

1
, k

2
are positive constants de"ned as

k
1
"minGA

1
2
!b¸B, (a

l
!2bo¸d)H and k

2
"max GA

1
2
#b¸B, A1#2

bo¸d
a
l
B

(A.10)

To prove the inequality given by equation (A9), we "rst note from equation (20) that

E
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)2bo P

L
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u
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L
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L

0
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)2dx#P

L

0

(u
x
)2dxB. (A11)

After using equation (A8), we can utilize equation (A11) to form the following new
upper bound for E

c
(t):

E
c
)bo¸ P

L

0

(u
t
)2dx#bo¸d P

L

0
A

u
x

J1#(u
x
)2B

2
dx. (A12)

We can use the same procedure use to form the upper bound for E
c
(t) given in

equation (A12) to formulate the following lower bound on E
c
(t):

!bo¸ P
L

0

(u
t
)2dx!bo¸d P

L
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x

J1#(u
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)2B

2
dx)E

c
. (A13)

We now use equations (A13) and (17) to formulate the lower bound,

A
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!b¸B P
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We now proceed to develop a lower bound for the bracketed term in equation
(A14). First, we note that it is easy to show that

A
u
x

J1#(u
x
)2B

2
)2(!1#J1#(u

x
)2). (A15)

After multiplying both sides of equation (A15) by !bo¸d and then adding
a
l
(!1#J1#(u

x
)2) to both sides of the resulting expression, we have

(a
l
!2bo¸d)(!1#J1#(u

x
)2))!bo¸d

u
x

1#(u
x
)2
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l
(!1#J1#(u

x
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(A16)

Thus, if we restrict the weighting constant b according to

b(
a
l

2o¸d
(A17)

as given in equation (A7), then the left-hand side of equation (A16) will always be
non-negative. After integrating both sides of equation (A16), we obtain the
inequality

0)(a
l
!2bo¸d) y)!bo¸d P

L

0
A

u
x

J1#(u
x
)2B

2
dx#a

l
y, (A18)

where y(t) was de"ned in equation (4). After using equation (3) to the right-hand
side of equation (A18), we can formulate the inequality
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By using the left-hand side of equation (A19) to lower bound the bracketed term in
equation (A14), we can form the inequality

0)CA
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!b¸B P
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o (u
t
)2dxD#(a
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!2bo¸d) y)E

c
#E, (A20)

where we further restrict the weighting constant b according to

b(1/2¸ (A21)

as given in equation (A7). We can now use equation (A20) to formulate the lower
bound

k
1
E
a
)E#E

c
, (A22)

where k
1
, E(t) and E

a
(t) were de"ned in equations (A10), (17) and (22) respectively.

To determine the upper bound given in equation (A9), we utilize equations (A12)
and (17) to obtain the upper bound
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Hence, we can utilize equations (A15), (3), (4), and (A23) to obtain the inequalities
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where k
2

was de"ned in equation (A10), and E(t) was de"ned in equation (17).
From equations (A12), (A10), and (A24), the result given in equation (21) is
obvious. K

Lemma 3. If the weighting constant b is restricted according to

b(minG
¹

0
2o¸

,
1

4¸JdH , (A25)

we can have an upper bound for the time derivative of <(t) of equation (19) as given by
equation (23), where d is de,ned in equation (A8).

Proof. After di!erentiating equation (19) with respect to time, we obtain

<0 "<0
1
#EQ

c
. (A26)

From Lemma 1, we know that<0
1
(t) can be expressed as in equation (A5). To obtain

the expression for EQ
c
(t) in equation (A26), we di!erentiate equation (20) respect to

time as

EQ
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(t)"A
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2
, (A27)

where the auxiliary variables A
1
(t) and A

2
(t) are given by
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and equation (7) has been utilized. After integrating A
1
(t) of equation (A28) by

parts, we obtain the following expression for A
1
(t):
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where the boundary conditions given by equation (8) have been employed. After
integrating the bracketed term in equation (A29) by parts, we obtain the following
expression for A

1
(t):

A"2b¹ ( ))¸
(u

x
(¸))2

J1#(u
x
(¸))2

!2b¹ ( ) )¸(J1#(u
x
(¸))2) (A30)

!2b¹( ) ) P
L

0
A

(u
x
)2

J1#(u
x
)2
!J1#(u

x
)2Bdx

#C2b¹( ) )¸!2b¹( )) P
L

0

1 dxD,
where the boundary conditions given by equation (8) have been employed, and the
bracketed term that is equal to zero has been added to facilitate the analysis. After
integrating A

2
(t) of equation (A28) by parts, the expression for A

2
(t) can be written

as
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where the boundary conditions given by equation (8) have been utilized.
We can now utilize equation (A27), (A30), and (A31) to write the expression for

EQ
c
(t) as
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After substituting equations (A32) and (A5) into equation (A26) and collecting
collecting common terms, we obtain
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After applying equations (2), (13), (A8), and selecting b to satisfy equation (A25), we
obtain the upper bound for <Q (t),
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where i is some positive constant. Now, it is easy to show that
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After substituting equation (A35) into equation (A34) and using equation (A8), we
can easily formulate the upper bound for <0 (t) as given in equation (23). K

Lemma 4. If (1) <
a
(t) is a non-negative, scalar function that is lower bounded by zero

(2) <0
a
(t))!f (t) where f (t) is a scalar, non-negative function, and (3) f0 (t) is bounded

then
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f (t)"0. (A36)

Proof. First, we de"ne the function

<
n
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a
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a
(q)#f (q)) dq (A37)

that is lower bounded by zero (since we have assumed that <
a
(t)*0 and that

<0
a
(t))!f (t), we know that <

n
(t)*0). If we di!erentiate equation (A37) with

respect to time, we obtain
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n
(t)"!f (t). (A38)

We now apply a lemma from reference [13, p. 127] that states that if (1) <
n
(t) is

a non-negative, scalar function that is lower bounded by zero, (2) <0
n
(t)"!f (t)

where f (t) is a scalar, non-negative function, and (3) f0 (t) is bounded then

lim
t?=

f (t)"0. (A39)

Application of the above lemma to equations (A37) and (A38) yields the results
given by equation (A36). K
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